Основными отличиями предприятия, производящего изделия микроэлектроники, от других предприятий, является техпроцесс изготовления основной продукции (изделий электронной техники), а также основное технологическое оборудование и материалы.

Технологический процесс изготовления изделий электронной техники насчитывает от 50 до 150 операций в зависимости от вида конкретного изделия.

Первой операцией является резка полупроводниковых кремниевых пластин диаметром 150 мм из слитка кремния. Готовые пластины поступают на группы операций, формирующих p-n переходы. К этим операциям относятся обезжиривание, диффузия, окисление.

Обезжиривание выполняется на специальных установках обезжиривания, в ванны которых заливается специальный обезжиривающий раствор, в который на некоторое время окунаются пластины. Время пролеживания обезжиренных пластин перед диффузией или окислением не должно превышать 30 мин. Операции диффузия и окисление осуществляются в специальных диффузионных печах, например СДО 125/3.

Очистка поверхности пластин от загрязнений на протяжении технологического производственного процесса осуществляется многократно. С точки зрения механизма процессов все методы очистки можно условно разделить на физические и химические. При физических методах загрязнения удаляются растворением, а также обработкой поверхности ускоренными до больших энергий ионами инертных газов. В тех случаях, когда загрязнения нельзя удалить физически, применяются химические методы, при которых загрязнения, находящиеся на поверхностном слое, переводятся в новые химические соединения и затем удаляются.

Процесс диффузии представляет собой проникновение примесей бора и фосфора в кремний под воздействием температуры. В результате диффузии, формируется диффузионный слой с заданными поверхностной концентрацией и профилем распределения примеси по глубине от поверхности полупроводника до границы p-n перехода. Чаще всего диффузия примесей проводится в прочном реакторе в потоке газа-носителя, который доставляет к поверхности полупроводниковых пластин примесесодержащее вещество из внешнего источника.

Для нанесения локальных, расположенных на поверхности полупроводника источников диффузии, применяют газообразные, жидкие и твердые внешние источники примеси. Газообразными источниками служат, в основном, гидриды примесей (РН3, В2Н6). Они поставляются в баллонах малой емкости в виде сильно разбавленных инертным газом смесей, в диффузионную печь вводятся через вентиль и смеситель вместе с газом-носителем и окислителем (кислородом).

Жидкие внешние источники (находящиеся при нормальных условиях в жидком состоянии) диффузии применяют в настоящее время наиболее широко. Имея высокую упругость паров, и находясь в дозаторе при фиксированной температуре, они позволяют точно регулировать содержание примеси в газовой фазе, поступающей в диффузионную печь. Локальный источник формируется в виде тонкой (около 0,1 мкм) пленки окисла примеси.

Для проведения операций диффузии в нужных местах полупроводниковой пластины с помощью операции литографии в предварительно нанесенном окисле формируются специальные окна необходимой формы. Окисление используется для формирования пленок окисла SiO2.

Для формирования конфигурации элементов интегральных микросхем, а также для операций нанесения тонких и толстых пленок используются операции литографии, в частности фотолитография. Она позволяет, воспроизводимо, и с большей точностью выполнять сложные рисунки с размерами элементов до одного и менее микрона на разнообразных материалах (рис. 1). Литография применяется при изготовлении полупроводниковых и пленочных структур, для получения возможных канавок и углублений в полупроводниковых и других материалах. С помощью литографии изготавливают шаблоны – инструменты для проведения самого процесса литографии, получают сквозные отверстия в фольге при изготовлении прецизионных свободных масок, трафаретов, печатных плат и гибких носителей кристаллов.

Рис. 1. Процесс литографического переноса изображения

Для объединения областей полупроводниковой пластины, представляющей собой выводы диода, с контактными площадками пластины используются операции металлизации.

Металлизация представляет собой нанесение на полупроводниковую пластину тонкой пленки металла, чаще всего алюминия (Al) толщиной до 10 микрон. Для формирования рисунка токопроводящих дорожек снова используется процесс фотолитографии, показанный на рис. 1, за исключением того, что вместо слоя окисла SiO2 нанесен слой Al.

Полученные вышеописанным образом кристаллы диодов содержатся в одной пластине. Далее необходимо организовать разделение пластин на кристаллы и подготовить их к проведению дальнейших сборочных операций. Процесс подготовки к сборке, кроме разделения пластин на отдельные кристаллы, включает их очистку, контроль, ориентированную подачу на позицию сборки. Разделение пластин скрайбированием осуществляют в две стадии: вначале на поверхность пластины между готовыми микросхемами наносят в двух взаимно перпендикулярных направлениях неглубокие риски, а затем по этим рискам разламывают ее на прямоугольные или квадратные кристаллы. При сквозном разделении пластину прорезают режущим инструментом насквозь. Для резания наиболее часто применяют алмазные диски и проволоку или полотна с абразивной суспензией, а также ультразвуковой инструмент.

Отдельные кристаллы передаются на операции сборки. Первая операция сборки – это посадка кристалла. Кристаллы, приклеенные к специальной клеящейся основе спутника носителя на предыдущей операции, специальным устройством установки посадки снимаются с клеящейся основы и устанавливаются на эвтектический сплав (температура затвердевания 356 ºС). Корпус с посаженным кристаллом подается на установку термокомпрессионной сварки. Далее происходит процесс герметизации в корпусе. В настоящее время для герметизации наиболее широко используют пластмассовые и керамические корпуса.

После каждой группы технологически законченных комплексов операций проводятся операции контроля.

Другое по теме: