Под коррозией понимают самопроизвольное разрушение твердых тел, вызванное химическими и электрохимическими процессами, развивающимися на поверхности тела при его взаимодействии с внешней средой. Коррозия металлов происходит вследствие их взаимодействия с химически активными веществами, содержащимися в природных и технологических средах.

Топливо вызывает коррозию металлов и в жидком, и газообразном состоянии, когда образуется горючая смесь. Кроме того, на коррозию влияют и продукты сгорания. Минимальное коррозионное воздействие на металлы деталей двигателя является одним из основных требований, предъявляемых к автомобильным бензинам.

Коррозии подвергаются топливные баки, трубопроводы, детали топливоподающей системы двигателя, а также резервуары для хранения и цистерны, используемые при транспортировании бензина. Способствует этому наличие в топливе коррозионно-агрессивных соединений: водорастворимых (минеральных) кислот и щелочей, активных сернистых соединений, воды, органических кислот и др.

Водорастворимых кислот и щелочей в бензинах быть не должно. Однако при транспортировании и хранении в топливо могут попасть соединения серной кислоты, едкого натра, сульфокислот и других веществ, вызывающих сильную коррозию цветных и черных металлов.

Практически всегда в топливе содержатся органические соединения кислого характера (нафтеновые кислоты и фенолы). Они наиболее активны по отношению к цветным металлам (свинец, цинк), причем с повышением температуры их активность возрастает, а с увеличением молекулярной массы – уменьшается. При наличии кислых органических кислот в топливах характеризуется кислотностью., которую по ГОСТ 5985-79 определяют количеством щелочи (в мг), потребной для нейтрализации кислот, содержащихся в 100 мл топлива. Плотностью удалять кислоты и фенолы из топлива нет необходимости, так как их коррозионная агрессивность ниже, чем у неорганических кислот.

Сернистые соединения, содержащиеся в топливе, отрицательно сказываются на его эксплуатационные свойства: стабильности, способности к нагарообразованию, коррозионной агрессивности и др. Особенно агрессивны активные сернистые соединения, которые вызывают коррозию металлов даже при нормальных условиях, поэтому наличие их в топливе крайне нежелательно.

При сгорании как активных, так неактивных сернистых соединений образуется серный (SO3) и сернистый (SO2) ангидриды, которые, соединяясь с водой (при конденсации ее из продукта) сгорания), образуют соответственно серную и сернистую кислоты. Серный ангидрид при работе прогретого двигателя вызывает газовую коррозию цилиндров, поршней и выпускных клапанов.

Коррозийный износ в значительной степени зависит от изношенности двигателя и количества серы, содержащейся в топливе. При увеличении содержания серы в бензине от 0,05 до 0,1% коррозионный износ деталей увеличивается в 1,5-2 раза, с 0,1 до 0,2% - еще в 1,5-2 раза, а с 0,2 до 0,3% - 1,3-1,7 раза.

Процесс удаления серы из бензина очень трудоемкий и требует больших затрат. Поэтому часть сернистых соединений, в основном, неактивных, в количестве, не влияющем на износ двигателя, в топливе обычно оставляют.

Страницы: 1 2

Другое по теме:

Технологический процесс обработки шестерен из стали 12ХН3А
Для цементуемых изделий применяют низкоуглеродистые (0,1–0,25% С) стали. После цементации, закалки и низкого отпуска этих сталей цементованный слой должен иметь твердость HRС 58–62, а сердцевина HRC 20–40. Сердцевина цементуемых сталей должна иметь высокие механические свойства, особенно ...

Электропривод якорно-швартовного устройства
Основные технические требования к якорно-швартовным механизмам с электрическим приводом предусмотрены ГОСТ 5875-69 Ниже приводятся требования к первой группе якорно-швартовных механизмов, к которой относятся брашпили, якорно-швартовные шпили, якорные шпили, якорно-швартовные лебедк ...

Автомобильные двигатели внутреннего сгорания
Основные исходные данные, необходимые для расчёта рабочего цикла проектируемого двигателя и вычисления его основных геометрических параметров приведены в «Задании на курсовую работу» (п. 3 Задания): а) эффективная мощность, Ne [кВт]; б) частота вращения коленвала при Ne, nNe [ ...