При работе авиационного газотурбинного двигателя на рабочие лопатки компрессора действуют периодически изменяющиеся газовые силы, что связанно с неравномерностью газовоздушного потока по окружности в проточной части двигателя. Эти силы вызывают вынужденные колебания лопаток. При совпадении частот собственных колебаний лопатки с частотами вынужденных колебаний наступают резонансные колебания, при которых амплитуда колебаний резко возрастает, что может привести к разрушению лопатки. Опасных резонансных колебаний можно избежать путем изменения частоты собственных колебаний лопаток или частоты и величины возбуждающей силы.

Колебания лопаток могут быть изгибными, крутильными, сложными (изгибно-крутильными) и высокочастотными пластиночными.

Особенно легко возбуждаются колебания по основной (первой) изгибной форме. Нередко возникают колебания по второй или третьей изгибной, первой или второй крутильной формам.

Целью данного расчета является определение частоты собственных изгибных колебаний рабочей лопатки первой ступени компрессора по первой форме, построение частотной диаграммы и нахождение резонансных режимов работы двигателя.

Для определения частоты собственных изгибных колебаний лопаток по первой форме воспользуемся энергетическим методом Релея, который основан на законе сохранения энергии свободно колеблющейся упругой системы. Согласно этому закону для свободных колебаний упругой системы без учета сил сопротивления сумма кинетической и потенциальной энергий сохраняется все время неизменной. Сущность метода состоит в том, что вычисляются максимальные значения потенциальной энергии лопатки в ее крайнем положении, а кинетической энергии в среднем.

Вращение лопатки совместно с диском, на котором она закреплена, оказывает влияние на ее колебания, так как центробежная сила стремится вернуть колеблющуюся лопатку в положение равновесия. Действие центробежной силы лопатки приводит к тому же результату, что и увеличение жесткости, поэтому частота собственных колебаний вращающейся лопатки (динамическая частота) повышается с увеличением частоты вращения ротора.

Динамическую частоту собственных изгибных колебаний вращающейся лопатки определяем по формуле:

,

где - собственная частота лопатки; - частота вращения ротора, об/c; - коэффициент пропорциональности, зависящий от геометрии лопатки и формы упругой линии.

Определив коэффициент и задавшись несколькими значениями частот в диапазоне рабочих частот вращения двигателя, находим соответствующие величины динамических частот собственных колебаний лопатки и строим зависимость

.

Построение частотной диаграммы.

Для построения частотной диаграммы необходимо нанести на график диапазон рабочих частот вращения двигателя от оборотов малого газа до максимальных оборотов. За частоту вращения ротора на режиме малого газа принимаем для ТРДД

.

Для определения резонансных режимов работы двигателя с учетом принятого масштаба нанести на график пучок прямых линий, выходящих из начала координат, которые представляют собой частоты колебания гармоник возбуждающих сил, описываемых уравнением

,

где - порядок гармоник возбуждающих сил; на графике он равен тангенсу угла наклона прямой. Для проектируемого двигателя= 22 – количество стоек; =36 – число лопаток направляющего аппарата .

Страницы: 1 2

Другое по теме:

Развитие мирового сотрудничества России в области гражданской авиации
С каждым годом всё больше и больше находят спрос за рубежом разработки российских учёных. Но иностранные предприятия предлагают показать то, на что способны российские учёные лишь на небольших, малобюджетных «контрактиках», невыгодных нам. Существуют лишь несколько крупных проектов, где р ...

Компрессор двухконтурного турбореактивного двигателя
В качестве прототипа двигателя принят ТРДД Д–18Т – трёхвальный турбореактивный двухконтурный двигатель. Особенность трёхвальной схемы–разделение ротора компрессора на три самостоятельных ротора, каждый из которых приводится во вращение своей турбиной. Конструкция двигателя выполнена ...

Исследование процесса технической эксплуатации топливных форсунок системы распределённого впрыска
Системы впрыска топлива изобретены практически одновременно с созданием автомобильного двигателя. Еще в 1881 году, когда большинство автомобилестроителей совершенствовали карбюратор, француз по имени Этив получил патент на систему измерения массы сжатого воздуха. В1883 году немецкий инже ...