Sсм= Lвл ×(d×В+1,7×Tср.гр) - смоченная поверхность корпуса;

здесь d =r/(r× Lвл ×В× Tcp.rp) - коэффициент полноты водоизмещения;

где r = 1,025т/м3

d=11192 / (1,025×49,4×9,8×4,245)=0,57

Sсм =49,4×(0,57×9,8+1,7×4,245)=632м2;

Vд=Vт+Vпт,

где Vт= l ¸ 3 — скорость течения, (м/с), принимаем Vт = 2 м/с;

Vпт= 0,1¸0,3 — скорость подтягивания судна к месту залегания якоря, м/с, принимаем Vпт=0,2 м/с

Vд=2+0,2=2,2 м/с.

Ft= (1,04×0,002+0,001)×632×1025×2,22/2= 4175 H

Сила ветрового сопротивления

Fb= kв×Sn×Vв2

где kв = 0,17-0,21 - коэффициент ветрового давления, кг/м3;

принимаем kв= 0,19;

Sn - парусная поверхность судна (сумма проекций надводной части на плоскость мидель-шпангоута), м2 .

Sn = 113 м2

Vв = 10 м/с - см. п. 1.1.

Fb = 0,19×113×102=2147 H

Длина провисающей части цепи

где F=Ft+Fв

F= 6322 H

q=9,8×mу - вес погонного метра якорной цепи, Н/м (см. п.3.2.9),

q=9,8×24=235,2 Н/м;

Н=50 м — глубина якорной стоянки ( см.п.3.2.10.);

Lц=√[2×50×6322/(235.2×0.87+502)]=75 м

Длина цепи, лежащей на грунте

L1=1/2×LРАСЧ.- LЦ , м

где значение LРАСЧ= 179 м взято из п.3.2.3.

L1 = l/2×179 – 75= 14,5 м

Усилие на звездочке при выбирании цепи, лежащей на грунте ( 1-я стадия)

Т1=fКЛ×q×(LЦ2 +Н2)/(2×Н), Н

где fКЛ=1,23 - коэффициент потерь на трение.

Tl = 1,23×235,2×(752+502)/(2×50)=23505 H

Усилие на звездочке при отрыве якоря от грунта (3-я стадия)

T3 = fКЛ×(2×Q+(Q+q×H)×b), Н

где b=0,87- коэффициент потери веса якоря в воде;

Q=9,81×ma, см. п. 3.2.2.;

Q=9,81×800=7848 H;

Т3=1,23×(2×7848+(7848+235,2×50)×0,87)=40288 Н

Усилие на звездочке на второй стадии принимается линейно возрастающим от T1 до Т3.

Усилие на звездочке при подъеме якоря после отрыва(4-я стадия):

а) в начале подъема

T4НАЧ = fКЛ×(Q+q×H)×b , Н [7.7]

Т4НАЧ=1,23×(7848+235,2×50)×0,87=20983 Н

б) в конце подъема

T4КОН = fКЛ×Q×b , Н [7.8]

Т4КОН= 1,23×7848×0,87=8398 Н

Моменты на валу электродвигателя на различных стадиях съемки с якоря рассчитываются по формуле

Мi = Тi×DЗВ/(2×i×hМЕХ), Н×м

где Тi - см. пп. 7.5-7.8.

M1= 23505×0,462/(2×104×0,76)=68,7 H×м

М3= 40288×0.462/(2×104×0,76)=117,7 Н×м

М4НАЧ= 20983×0.462/(2×104×0,76)=61,3 Н×м

M4КОН= 8398×0.462/(2×104×0,76)=24,5 H×м

По расчетным значениям Мi на основной механической характеристике W=f(M) найдем значения частот вращения электродвигателя. По характеристике W=f(I) для полученных значений частот вращения электродвигателя определим токи, потребляемые электродвигателем из сети. Полученные значения занесем в таблицу 7.1.

Таблица 7.1 - Данные для построения нагрузочной диаграммы при выбирании одного из якорей с расчетной глубины

Мi, Н×м

68,7

117,7

61,3

24,5

Wi, р/с

147

140

150

154

Ii, А

23

40

16

6

Время работы электродвигателя на отдельных стадиях съемки с якоря, с

t1=2×L1×iЯ / (DЗВ×W1), с

t2=2×(Lц-H)× iЯ /(D3B×( W1+W2)/2), с

t3 = 30¸60, с

t4=2×Н× iЯ /( D3B ×(W4НАЧ+W4КОН)/2), c

где W1, W2, , W4НАЧ, W4КОН - угловые скорости электродвигателя на основной характеристике W=f(M) (см. таблицу 7.1).

Страницы: 1 2 3

Другое по теме:

Технический ремонт автомобильного стартера
Система запуска двигателя, как следует из названия, предназначена для запуска двигателя автомобиля. Система обеспечивает вращение двигателя со скоростью, при которой происходит его запуск. На современных автомобилях наибольшее распространение получила стартерная система запуска. Систем ...

Комплексная автоматизация автотранспортного предприятия
Ведущие компании мира давно осознали, что достижение успеха в конкурентной борьбе на различных рынках невозможно без использования современных информационных технологий. В то же время, все прекрасно понимают, что разработка законченного программного решения качественно и в срок требует в ...

Компрессор двухконтурного турбореактивного двигателя
В качестве прототипа двигателя принят ТРДД Д–18Т – трёхвальный турбореактивный двухконтурный двигатель. Особенность трёхвальной схемы–разделение ротора компрессора на три самостоятельных ротора, каждый из которых приводится во вращение своей турбиной. Конструкция двигателя выполнена ...